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Opaque perfect lenses
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Abstract

The response of the “perfect lens”, consisting of a slab of lossless material of thick-
ness d with εs = µs = −1 at one frequency ω0 is investigated. It is shown that
as time progresses the lens becomes increasingly opaque to any physical TM line
dipole source located a distance d0 < d/2 from the lens and which has been turned
on at time t = 0. Here a physical source is defined as one which supplies a bounded
amount of energy per unit time. In fact the lens cloaks the source so that it is not
visible from behind the lens either. For sources which are turned on exponentially
slowly there is an exact correspondence between the response of the perfect lens in
the long time constant limit and the response of lossy lenses in the low loss limit.
Contrary to the usual picture where the field intensity has a minimum at the front
interface we find that the field diverges to infinity there in the long time constant
limit.
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1 Introduction

Recently there has been growing interest in superresolution, i.e. the fact that
an image can be sharper than the wavelength of the radiation, which is in
direct contrast to the proof of Abbe in 1873 that the resolution of a normal
lens is at most about λ/(2n) where λ is the wavelength and n is the refractive
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index. Although its significance was not recognized at the time, superreso-
lution was implicitly discovered in 1994. Specifically it was found [1] that a
coated cylinder with inner and outer radii rc and rs and having a real core
dielectric constant εc, a shell dielectric constant εs close to −1 (with a small
positive imaginary part) and a matrix dielectric constant εm = 1 would have
some rather strange properties in the quasistatic limit (where the free-space
wavelength is infinitely long compared to the structure). In particular a line
source aligned with the cylinder axis and positioned outside the cylinder ra-
dius at a radius r0 with r∗ < r0 < r2

∗
/rs where r∗ = r2

s/rc would have an
arbitrarily sharp image positioned at a radius r2

∗
/r0 outside the coated cylin-

der. This image would only be apparent beyond the radius r2
∗
/r0; closer to

the coated cylinder the potential was numerically found to exhibit enormous
oscillations. The reason that one finds an image at this radius is that it was
shown that the effect of the shell was to magnify the core, so it was equivalent
to a solid cylinder of radius r∗. By the method of images in two-dimensional
electrostatics the field outside the equivalent solid cylinder is that due to the
actual source plus an image source at the radius r2

∗
/r0. However in contrast

to electrostatics, the image source now lies in the physical region outside the
coated cylinder. The paper [2] contains an in depth review of the results of
the 1994 paper, correcting some minor errors.

Superresolution was rediscovered by Pendry [3], who realized its deep signifi-
cance for imaging. He claimed that the Veselago lens, consisting of a slab of
material having thickness d, relative electric permittivity εs = −1, relative
magnetic permeability µs = −1, and a refractive index of −1 would act as a
superlens perfectly imaging the fields near the lens and shifting them by the
distance 2d. There were some flaws in his analysis. In particular a point source
at a distance d0 < d from the lens, could not have an actual point source as
its image, since this would imply a singularity in the fields there which can-
not happen [4]. In fact there is no time harmonic solution in this case [5,6]
since surface polaritons of vanishingly small wavelengths cause divergences [7].
While experiment has provided evidence for superresolution [8,9,10,11,12] to
make theoretical sense of Pendry’s claim one has to regularize the problem, say
by making the slab lens slightly lossy or by switching on the source at finite
time. A careful analysis of the lossy case was made in [13,14], and a rigorous
mathematical proof of superlensing for quasistatic fields was given in [2] (see
also [15] where a careful time harmonic analysis was given for real εs and µs

close, but not equal to −1). Both for the quasistatic case [2] and for the full
time harmonic Maxwell equations [16,17] it was shown that contrary to the
conventional explanation where the field intensity has a minimum at the front
interface of the lens, the field actually diverges to infinity in two resonant lay-
ers of width 2(d−d0), one centered on the front interface and one centered on
the back interface. Indications of large fields in front of the lens [18,19,15,20]
were followed by definitive numerical evidence of enormous fields [21]. When
d0 < d/2 the resonant layers interfere with the source. It was discovered [16]
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(following a suggestion of Alexei Efros that the energy absorbed by the lens
may be infinite), that finite energy point or line sources or polarizable point
or line dipoles less than a distance d/2 from the lens become cloaked, and
are essentially invisible from outside the distance d/2 from the lens. Thus the
Vesalago lens, in the limit as the loss tends to zero does not perfectly image
physical sources that lie closer to the lens than a distance d/2.

The hope has persisted that a source turned on at time t = 0 would be
perfectly imaged by a lossless Veselago lens (the perfect lens) as t → ∞.
This was first suggested by Gómez-Santos[22] and subsequently Yaghjian and
Hansen[17] gave a detailed analysis. Both papers took into account the fact
that due to dispersion µs(ω) and εs(ω) can only equal −1 at one frequency
ω0. At nearby frequencies one has

εs(ω) = −1 + aε(ω − ω0) + O[(ω − ω0)
2],

µs(ω) = −1 + aµ(ω − ω0) + O[(ω − ω0)
2], (1.1)

where, due to causality, the dispersion coefficients (with εs(ω0) = µs(ω0) =
−1) necessarily satisfy the inequalities [17]

aε =
dεs

dω

∣

∣

∣

∣

∣

ω=ω0

≥
4

ω0
, aµ =

dµs

dω

∣

∣

∣

∣

∣

ω=ω0

≥
4

ω0
, (1.2)

which force them to be positive.

For simplicity it is assumed that the surrounding matrix material has µm =
εm = 1 for all frequencies. It was shown in these papers that the field at any
given time would be finite except at the source. Also figure 1 in [22] shows the
field has a local intensity minimum at the front interface and it was claimed
in [17] that as t → ∞ the field would diverge only in a single layer of width
2(d − d0), centered on the back interface. However, here we will show that,
again contrary to the conventional picture, the situation is precisely analogous
to what occurs in a lossy lens as the loss goes to zero. The field also diverges
to infinity in the layer of width 2(d − d0) centered on the front interface,
and as a consequence cloaking occurs when the source is less than a distance
d/2 from the lens. The image of a constant energy source in this cloaking
region becomes rapidly dimmer and dimmer as time increases. So instead of
the lens being perfect, it is actually opaque to such sources, and cloaks them:
not only is the source dim behind the lens, it is also dim in front of the lens.
Essentially all of the energy produced by the source gets funnelled into the
resonant regions which continually build up in intensity. Thus the claim [22]
that “even within the self-imposed idealizations of a lossless (for ω = ω0) and
purely homogeneous, left handed material, Pendry’s perfect lens proposal is
correct” has to be qualified. It is only true for physical sources located further
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than a distance d/2 from the lens. For physical sources located less than a
distance d/2 from the lens the image is completely different from what would
appear if the lens were absent because the source interacts with the resonant
fields in front of the lens.

2 Analysis

Simple energy considerations indicate that something strange must happen
when d0 < d/2. From equation (62) in [17] we see that a source of constant
strength E0 switched on at t = 0 creates an electric field which near the back
interface scales approximately as

E ∼ E0t
1−d0/d. (2.1)

The stored electrical energy SE(t) will scale as the square of this, and conse-
quently the time derivative of the stored electrical energy will scale approxi-
mately as

dSE

dt
∼ E2

0 t
1−2d0/d, (2.2)

which blows up to infinity as t → ∞. If the source produces a bounded amount
of energy per unit time we have a contradiction. The conclusion is that if the
energy production rate of the source is bounded then necessarily E0 must
decrease to zero as t → ∞. (If it approached any other equilibrium value then
again we would have a contradiction). This sounds rather paradoxical but it
could be explained if there was a resonant region in front of the lens, creating a
sort of optical molasses, requiring ever increasing amounts of work to maintain
the constant strength E0.

Let us see that there is a resonant region in front of the lens through an
adiabatic treatment of the problem. For simplicity we assume a TM line dipole
source located along the Z-axis (which we capitalize to avoid confusion with
z = x + iy) and that the slab faces are located at the planes x = d0 and
x = d0 + d. Instead of assuming that the source is turned on sharply at
t = 0 and thereafter remains constant we assume that it has been turned
on exponentially slowly beginning in the infinite past. The source generates a
field with the plane wave expansion

Hdip
Z (x, y, t) =

∞
∫

−∞

dky a(ky)e
i(kxx+kyy−ωt) with kx =

√

ω2/c2 − k2
y, (2.3)
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for x > 0, which interacts with the lens, where the coefficients a(ky) need to
be determined and the square root in (2.3) is chosen so Im kx > 0 to ensure
that the waves due to the source decay as x increases. The frequency

ω = ω0 + i/T (2.4)

is complex and T is a measure of the time the source has been “switched
on” until time t = 0. It does not make sense to analyse this model in the
limit as t → ∞ since everything diverges exponentially in that limit. Rather
we consider the model at time t = 0 at which point the source has been
approximately constant for a very long period of time of the order of T . Thus
investigating the asymptotic behavior as T → ∞ at t = 0 in this model is
analogous to investigating the asymptotic behavior as t → ∞ of a constant
amplitude source which has been switched on at time t = 0.

For a dipole line source we have

Hdip
Z (x, y, t) =

πω0e
−iωt

2

(

−ko ∂

∂x
+ ike ∂

∂y

)

H
(1)
0

(

(ω/c)
√

x2 + y2

)

, (2.5)

in which H
(1)
0 is a Hankel function of the first kind and ke is the (possibly

complex) strength at t = 0 of the dipole component which has an associated
electric field with even symmetry about the x axis and ko is the (possibly
complex) strength at t = 0 of the dipole component which has an associated
electric field with odd symmetry about the x axis: these dipole strengths have
been normalized to agree with the definitions in [2] and [16]. By substituting
the plane wave expansion [see formula (2.2.11) in [23]]

H
(1)
0

(

(ω/c)
√

x2 + y2

)

=
1

π

∞
∫

−∞

dky
ei(kxx+kyy)

kx

, (2.6)

with

kx =
√

ω2/c2 − k2
y, (2.7)

in (2.6) we see that

a(ky) = −ω0[k
e(ky/kx) + iko]/2. (2.8)

We look for a particular solution of Maxwell’s equations where all the fields,
and not only the source, vary with time as e−iωt where ω is given by (2.4).
This solution is obtained by substituting this complex value of ω into the time
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harmonic Maxwell’s equations. Specifically with ω = ω0 + i/T and with the
lens having the least possible dispersion, εs and µs will according to (1.1) have
the complex values

εs = −1 + iaε/T + O(1/T 2), µs = −1 + iaµ/T + O(1/T 2), (2.9)

In other words, apart from the modulating factor of e−iωt, the mathematical
solution for the fields is exactly the same as for a lossy material with µ′′

s

and ε′′s approximately proportional to 1/T for large T . A correspondence of
this sort was noted before [17] but not fully exploited. By this argument it
immediately follows that for fixed ke and ko the fields will diverge as T → ∞
in two possibly overlapping layers of the same width 2(d − d0) one centered
on the back interface and one centered on the front interface. In particular, in
front of the lens, with 2d0 − d < x < d0, equations (4.18) and (4.19) of [16]
imply

HZ(x, y, t)≈Hdip
Z (x, y, t)

−ω0e
−iωt{[ge(z) − ge(z̄)]/2 + [go(z) + go(z̄)]/(2i)}, (2.10)

where z = x + iy, z̄ = x − iy and

gp(z) = −iqkp[aε/(2T )](2d0−d−z)/dQ0(2d − 2d0 + z), (2.11)

with

Q0(b) =
π

2d sin[πb/(2d)]
, (2.12)

in which q = 1 for p=e and q = −1 for p=o. Thus we see that gp(z) and hence
HZ(x, y, t) diverges as T → ∞ within a distance d − d0 from the front of the
lens. When d0 < d/2 this resonant region interacts with the source creating
the “optical molasses” that we mentioned. We have not done the computation,
but presumably if one took ko = 0 and chose ke to depend on T in such a way
that the source produces a given (T independent) amount of energy at time
t = 0 then one would find as T → ∞ that the field would be localized and
resonant in two layers of width d which touch at the slab center. We remark
that such field localization was found in the quasistatic case in the low loss
limit [16] and also when two opposing sources are placed a distance d/2 behind
and in front of the lens [24,25]

We only considered a particular solution to the equations. The general solution
is of course the sum of a particular solution plus a solution to the homogeneous
equations with no sources present, which we call a resonant solution. Since the
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lens is lossless, energy must be conserved and so a resonant solution which is
zero and has zero total energy in the infinite past, must be zero for all time.
Therefore the particular solution we considered is the only solution which
satisfies the boundary condition of being zero in the infinite past.

No immediately apparent problems occur for line sources with d0 between
d/2 and d. While the stored electrical energy SE(t) in the resonant regions
increases without bound, we see from (2.2) that the rate of increase diminishes
with time. Similarly the rate of increase of magnetic energy diminishes with
time. Therefore the image of such sources will get brighter and brighter as
t → ∞ approaching the same brightness as the original source without the lens
present. However because the energy stored in the resonant regions is so large
it may be the case that slight variations in the intensity of the source or slight
non-linearities or slight inhomogeneities in the permeability and permittivity
of the lens will scatter radiation and destroy the “perfect image”. The spatial
dispersion of the dielectric response of the slab will also limit resolution [26].
Finally we remark that we have assumed that the radiation coming from the
source is coherent.
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