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Negative Refraction at Optical Frequencies in Nonmagnetic Two-Component Molecular Media
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There is significant motivation to develop media with negative refractive indices at optical frequencies,
but efforts in this direction are hampered by the weakness of the magnetic response at such frequencies.
We show theoretically that a nonmagnetic medium with two atomic or molecular constituents can exhibit
a negative refractive index. A negative index is possible even when the real parts of both the permittivity
and permeability are positive. This surprising result provides a route to isotropic negative-index media at
optical frequencies.
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In 1968 Veselago [1] considered the electrodynamic
properties of isotropic media where the real part of the
electric permittivity � and the real part of the magnetic
permeability � are simultaneously negative. Veselago
showed that if �;� < 0 then the electric field E, the
magnetizing field H and the wave vector k form a left-
handed orthogonal set, contrary to all known naturally
occurring materials where the triplet of these vectors is
right-handed. Media with both negative electric permittiv-
ity and magnetic permeability are referred to as left-handed
materials (LHM) [2] at the frequencies for which �;� < 0.

A consequence of simultaneously negative � and � is
that the Poynting vector S � E�H and the wave vector
k � �!=jEj2�E� B point in opposite directions for a
monochromatic plane wave with angular frequency !, as
here the direction of the magnetic field necessarily opposes
that of the magnetizing field, B � �H [1]. Veselago ar-
gued that the direction of the energy flow (S) must point
away from its source and thereby reached the surprising
conclusion that in LHM the wave vector points toward the
source [1]. This in turn led to the prediction that LHM
exhibit a negative refractive index, as well as reversed
Doppler and Cherenkov effects [1].

No naturally occurring isotropic material is known to
have �;� < 0 at the same frequency. Pendry et al. [3] thus
suggested that structures containing metal strips and split-
ring resonators could be engineered such that both � and �
are negative at microwave frequencies. Shelby et al. [4]
subsequently reported the observation of negative refrac-
tion at 10.5 GHz in a left-handed metamaterial. A major
goal of this field of research is the development of media
with negative refractive indices at optical frequencies,
where exciting concepts such as the ‘‘perfect lens’’ [5]
would have their greatest impact. To date, there are no
reports of media that exhibit a negative refractive index at
optical frequencies. A major impediment to the develop-
ment of such media is the fact that magnetic resonances
occur at much lower frequencies, so magnetic effects at
optical frequencies are very weak. Photonic crystals [6,7],
and birefringent crystal assemblies [8] have been investi-
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gated as dielectric negative-index media, but these are not
isotropic and they therefore cannot be characterized by a
single, scalar refractive index. In addition, diffraction phe-
nomena may contribute to their properties.

In this Letter we demonstrate that a nonmagnetic system
with two molecular components, one of which is in its
excited state, can achieve negative refraction. Contrary to
common belief, this is possible even when the material is
right handed, i.e., the real parts of both � and � are
positive. Such a material could be a route to negative
refraction at optical frequencies. The occurrence of nega-
tive refraction in isotropic media is especially desirable for
refraction experiments and the fabrication of optical
components.

There has been much discussion of the directions of
energy flux and group velocity in novel optical media.
Loudon [9] pointed out that in general these could differ,
and as mentioned, Veselago recognized that this could be
the case in LHM. Zheleznyakov et al. [10] considered this
issue in the context of backward electromagnetic waves,
and more recently, Pokrovsky and Efros [11] addressed it
for LHM. While this discussion contributes much insight
to the picture of wave propagation in novel materials, we
take a different approach here and focus on the implica-
tions of causality for the propagation. We employ a rig-
orous analysis of causal wave propagation as first
discussed by Sommerfeld and Brillouin [12]. We begin
by considering the wave equations for a homogeneous
isotropic linear medium in a source-free region,

r2 ~E�r; !� � �!2~��!� ~��!�~E�r; !�;

r2 ~B�r; !� � �!2~��!� ~��!�~B�r; !�:
(1)

~E�r; !� and ~B�r; !� are the complex Fourier transforms of
the corresponding real fields E�r; t� and B�r; t�, where the
Fourier transforms in (1) are defined as

~f�!� �
1�������
2


p
Z 1

�1
f�t�ei!tdt: (2)

The vector equations have a common form for each
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FIG. 1. Zero-pole pairs are shown for a passive LHM (F > 0
and G> 0) in which both �� and �� have positive signs.
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Cartesian component and can be simplified to

@2~g�z;!�

@z2
� �!2~��!� ~��!�~g�z;!�; (3)

if we consider a general plane wave propagating in the 
z
direction. The equation has the time-domain Green’s func-
tion solutions

g�z; t� �
1�������
2


p
Z 1

�1
~g�z; !�e�i!td!

�
1�������
2


p
Z 1

�1
ei�~k�!�z�!t�d!: (4)

~k�!� is in general not single valued due to the branch cuts
created in taking the square root, and Einstein causality is
needed to determine the correct branch of ~k�!�. More
precisely, with ~��!� � j~��!�jei�� and ~��!� �
j ~��!�jei�� , the two branches are ~k�!� �
�!

������������������������������
j~��!� k ~��!�j

p
ei���
���=2, with corresponding refrac-

tive indices ~n�!� � �c
������������������������������
j~��!� k ~��!�j

p
ei���
���=2.

Einstein causality further assures that the physical solution
is always

~n�!� � 
c
������������������������������
j~��!� k ~��!�j

q
ei���
���=2; (5)

regardless of the exact functional form of ~��!� and ~��!�
[13].

We now express the permittivity and the permeability in
terms of Lorentz oscillator models as their generality facil-
itates the discussion of the refractive index for a variety of
systems, such as atoms in the gas phase, conductors near a
plasmon resonance, or any medium whose optical proper-
ties are directly related to the underlying molecular polar-
izabilities and magnetizabilities. The electric permittivity
~��!� and the magnetic permeablity ~��!� may then be
written as

~��!� � �0

�
1


F

!2
pole��

� �!
 i	�2

�

� �0
�!
 i	�2 �!2

zero��

�!
 i	�2 �!2
pole��

(6)

~��!� � �0

�
1


G

!2
pole��

� �!
 i	�2

�

� �0

�!
 i	�2 �!2
zero��

�!
 i	�2 �!2
pole��

; (7)

where !2
zero�� � !2

pole��

 F, and similarly !2

zero�� �

!2
pole��


G. F, G, and 	 are all taken to be real. A system
in the ground state corresponds to F,G> 0 and an inverted
system has F, G< 0. The permittivity of the vacuum is �0
and its permeability is �0. 	 is the half width at half
maximum of the Lorentzian spectrum (	> 0). From
Eq. (6) we know that the structures of the zeros and poles
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determine ��, the principle value of the argument of ~��!�,
i.e.,�� � Arg�~��!��. In the case of a noninverted (passive)
Lorentz oscillator, the contribution from the zero-pole pair
yields a positive ��, whereas for the inverted system,�� is
negative; and similarly for ~��!�. The angles ��� �

��� 
��� and �n � ���=2 are thus determined by the
zeros and poles of both ~� and ~�. Figure 1 gives an example
of how the angle��� is affected by the zero-pole structures
of both ~� and ~� [22]. We can also see from Fig. 1 that for a
passive LHM, i.e., when 
=2<�� < 
 and 
=2<�� <

, we have 
=2<�n < 
. This results in Re
n�< 0, as
has been shown in prior work on passive LHM (c.f.
[1,4,5,20,23–26]). Thus, the sign of the index based on
causality reproduces prior results [1,5] under appropriate
conditions. A systematic treatment of the possible out-
comes for the sign of the index appears in Ref. [28]

One major difficulty in obtaining a negative refractive
index at optical frequencies through passive LHM has been
that for most systems, the magnetic response at such high
frequencies is very weak. By recognizing that it is the
combined contribution from the zero-pole structures of
~��!� and ~��!� that determines the sign of the refractive
index [as is evident in Eq. (5), where the sign is completely
determined by �� 
��], one can consider the idea of
achieving negative refraction with two closely lying poles
and zeros from the electrical response and a nonresonant
magnetic response. As we demonstrate below, this is not
only theoretically possible, but also seems to be experi-
mentally feasible.

We now show that even when both � and � are positive,
i.e., in a right-handed medium (RHM), the structures of the
zeros and poles may in certain cases give rise to a negative
refractive index. Surprisingly, this can happen for a non-
magnetic system. We consider a two-component system
with � � �0 and with

~��!� � �0

�
1


�

!2
pole1 � �!
 i	�2



�

!2
pole2 � �!
 i	�2

�

� �0

�!
 i	�2 �!2

zero1�
�!
 i	�2 �!2
zero2�


�!
 i	�2 �!2
pole1�
�!
 i	�2 �!2

pole2�
:

(8)
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We assume that !pole2 >!pole1. !zero1 and !zero2 depend
on � and �. Generally, � and � are independent of each
other; however, to simplify the discussion we consider the
case for which

� � �0�!
2
pole2 �!2

pole1�> 0;

� � ��
������
�0

p
� 1�2�!2

pole2 �!2
pole1�< 0;

(9)

so that the two zeros are equal:

!2
zero1 � !2

zero2 � !2
pole1 �

������
�0

p
�!2

pole2 �!2
pole1�; (10)

where �0 is a positive real number. The poles and zeros for
the upper sign in Eqs. (9) and (10) are shown in Fig. 2.
Provided that �0 is large enough, one may have �3
=4�<
j’1j<
 and �3
=4�< j’2j<
, such that �3
=2�<
�� < 2
, where ’1 is the principal value of the argument

of

�!
i	�2�!2

zero1�


�!
i	�2�!2
pole1�

and ’2 is the principal value of the argu-

ment of

�!
i	�2�!2

zero2�


�!
i	�2�!2
pole2�

. Hence, the real part of ~� is positive.

Given that � � �0 is real and positive, the system is a
RHM. However, the refractive index will have a negative
real part, since �3
=4�<�n � ���=2�<
. Similarly, for
the lower sign in Eqs. (9) and (10) (not shown in the figure),
we can have �2
<�� <��3
=2�. Hence, the real part
of ~� is again positive and the system is also a RHM. The
refractive index will also have a negative real part, since
�
<�n � ���=2�<��3
=4�. It is interesting to note
that for this system the imaginary part of the refractive
index is now negative. This indicates that while the system
with the upper sign in Eqs. (9) and (10) is lossy, the system
with the lower sign has gain.

Numerical estimates show that for certain frequency
ranges RHM with negative refractive indices may be real-
ized experimentally. We considered gas-phase as well as
condensed-phase media, and here we provide two specific
examples using values typical of condensed molecular
media. In these examples the number densities are some-
what high; however, the results show that it is plausible that
such systems may be realized.
� and � are given by

� �
2N1 �p2

1!pole1

�0@
and � �

2N2 �p2
2!pole2

�0@
; (11)
FIG. 2. The zero-pole structure of a RHM that exhibits a
negative refractive index.
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where �p1 and �p2 are the transition dipole moments, and N1

and N2 the number densities of molecular species 1 and 2,
respectively. We now assume that species 1 is in its ground
state and has N1 � 3� 1028 m�3 with a resonance at
!pole1 � 14 000 cm�1. Further, we take �p1 � �p2 � 3 D,
and 	 � 400 cm�1. If species 2 is in the excited state at
!pole2 � 20 000 cm�1 with N2 � 2:52� 1027 m�3, then
the real part of the refractive index becomes negative
between 445 and 530 nm. For the wavelengths between
455 and 495 nm the material is moreover right handed
(with 0< Re
~��< 0:6�0 and ~� � �0), i.e., the real part of
the refractive index dominates, and reaches �1:2 in this
wavelength range. The parameters used above are based on
the upper sign in Eqs. (9) and (10), and the system is lossy
for the frequency range where the real part of the refractive
index becomes negative, as can be seen in Fig. 3(a).

Similarly, we can envision a system with gain by con-
sidering the lower sign case in Eqs. (9) and (10). Assuming
N1 � 2� 1027 m�3 for the noninverted species, N2 �
1:75� 1028 m�3 for the inverted species, !pole1 �

14 000 cm�1, !pole2 � 20 000 cm�1, 	 � 400 cm�1, and
taking �p1 � �p2 � 3 D, we find that the real part of the
refractive index becomes negative (for the wavelength
range 650 to 920 nm), and within the range of 720 to
915 nm, the material is right handed (with 0< Re
~��<
0:65�0 and ~� � �0) and its refractive index reaches �1:1
[see Fig. 3(b)]. However, now the imaginary part of the
index is also negative (i.e., the system has gain). The need
to pump the material may be considered a disadvantage for
practical implementations of negative-index media, but
may facilitate observation of the effect by compensating
absorption.

Our preliminary calculations suggest that right-handed
two-component systems with a negative refractive index
support evanescent wave amplification predicted in LHM
[5], although the underlying details seem to differ.
FIG. 3. The real and imaginary parts of the refractive index for
two-component systems with loss (a) and gain (b). See text for
details.
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By considering two-component systems in which one
component (molecular species) may be inverted, we pre-
dict the existence of nonmagnetic amorphous solids and
liquids that have a negative refractive index. Remarkably,
the materials are ‘‘right handed,’’ that is to say, the real part
of the permittivity and the permeability are both positive at
the frequency of interest. Moreover, the two-component
media have gain which can overcome the absorption that
plagues most ‘‘left-handed’’ negative-index metamaterials
(c.f. [27]). Because we make use of ‘‘ordinary’’ resonances
in the permittivity, our proposed route to negative refrac-
tion opens the possibility of tailoring negative-index media
simply by choosing their molecular composition. We ex-
pect that this will make it possible to observe negative
refractive indices at visible wavelengths in appropriately
chosen mixtures.
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