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Nonmagnetic nanocomposites for optical and
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We develop an approach to use nanostructured plasmonic materials as a nonmagnetic negative-refractive-
index system at optical and near-infrared frequencies. In contrast to conventional negative-refraction materi-
als, our design does not require periodicity and thus is highly tolerant to fabrication defects. Moreover, since
the proposed materials are intrinsically nonmagnetic, their performance is not limited to the proximity of a
resonance, so the resulting structure has relatively low loss. We develop the analytical description of the rel-
evant electromagnetic phenomena and justify our analytic results via numerical solutions of Maxwell
equations. © 2006 Optical Society of America
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. INTRODUCTION
he electromagnetic response of negative refractive index
aterials (NIM)1–8 has recently attracted unprecedented

ttention. Novel optical phenomena predicted to take
lace in these unique systems include the reversal of
nell’s Law, the Doppler effect, the Cherenkov effect,1

berration-free1,2,5 and subdiffraction3,9–17 imaging, and
xcitation of the new types of surface and nonlinear
aves.8,18 In particular, realization of NIMs may poten-

ially lead to fabrication of new types of lenses and
risms,1,3,5 new lithographic techniques,9,16,17 novel ra-
ars, sensors, and telecommunication systems. However,
espite the great advantages NIM has to offer for optical
nd infrared spectral range, all practical realizations of
IM are currently limited to gigahertz frequencies.19–23

Until recently there were two major approaches for
IM design. The first one is based on the original
roposal1 that material with simultaneously negative di-
lectric permittivity and magnetic permeability must
ave a negative refractive index. This particular ap-
roach also benefits from the possibility to resonantly ex-
ite the plasmon polariton waves at the interface between
IM and surrounding media, which in turn may lead to

ubdiffraction imaging.3,9–13,24 However, the absence of
atural magnetism at high (optical or infrared)
requencies25 requires the design and fabrication of nano-
tructured metamaterials to achieve nontrivial magnetic
ermeability.20,26–31 As these engineered systems typi-
ally operate in close proximity to resonance, resonant
osses become the dominant factor in system response, se-
erely limiting the practicality of resonant-based
ystems.10–13,32
0740-3224/06/030498-8/$15.00 © 2
The second approach for NIM design involves the use of
hotonic crystals.4,21–23,34,35 However, the NIM response
n these systems is typically associated with second- or
ther higher-order bands and requires a complete band-
ap between the band in use and the next band. The dis-
ersion and very existence of the required bandgap are
ypically strongly affected by crystal disorder, unavoid-
ble during the fabrication step. The manufacturing of
he optical photonic-crystals-based NIM typically re-
uires three-dimensional patterning with accuracy of the
rder of 10 nm, which is beyond the capabilities of mod-
rn technology.

To address the above-mentioned shortcomings of the
raditional NIM schemes, we have recently introduced an
lternative approach to design NIM structures.7 In con-
rast to “conventional” systems, the proposed design does
ot rely on either magnetism or periodicity to achieve
egative refraction response. It has been shown that the
ombination of strong anisotropy of the dielectric constant
nd planar waveguide geometry yields the required nega-
ive phase velocity in the system.7 Here we present a de-
ailed description of NIMs proposed in Refs. 7 and 36,
tudy the effects related to waveguide boundaries, impor-
ant for optical domain, and suggest several nanostruc-
ured materials providing the low-loss negative refraction
esponse at optical and infrared frequencies.

The rest of the paper is organized as follows: Section 2
s devoted to electromagnetic (EM) wave propagation in
trongly anisotropic waveguides; Section 3 describes the
roposed realizations of the structure; imagining proper-
ies of these composites are shown in Section 4; and Sec-
ion 5 concludes the paper.
006 Optical Society of America
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. NEGATIVE REFRACTION IN STRONGLY
NISOTROPIC WAVEGUIDES
e consider wave propagation in the two-dimensional

lanar waveguide structure shown in Fig. 1. The propa-
ation in the system is allowed in the y and z directions,
hile the waveguide walls occupy the regions �x��d /2.
he waveguide core is assumed to be a homogeneous,
onmagnetic ��=1� material, with a uniaxial anisotropic
ielectric constant with dielectric permittivities �� and ��

long and perpendicular to the optical axis, respectively.
he optical axis of the core material �C� is assumed to be
erpendicular to the direction of the wave propagation in
he media �C �x�. Therefore, despite the anisotropy of the
ystem, the effective refractive index of propagation in
he planar geometry waves will be completely isotropic.

Any wave propagating in the system can be repre-
ented as a linear combination of the waveguide
odes.7,25 An individual mode is defined by its structure

long the optical axis direction �C� and its polarization.
wo different kinds of mode have to be distinguished. The
odes of the first kind (known as TE waves) have their E

ector perpendicular to the optical axis. The propagation
f these waves is fully described by the in-plane dielectric
onstant ��. The modes of the second kind (known as TM
aves) have their H vector in the waveguide plane and
re affected by both �� and ��. The existence of these TM
aves is crucial for the NIM described here.
In the analytical results presented below we limit our-

elves to the case of single-mode propagation. We note
hat such a description provides complete information
bout the linear properties of the waveguide structure.
ndeed, as mentioned above, an arbitrary wave packet in
he system can be represented as a linear combination of
odes. In our numerical simulations discussed in Section

, we utilize this property to compute the imaging perfor-
ance of the system.

. Waveguide with Perfectly Conducting Walls
s was shown in Ref. 7, the propagation of a mode in a
lanar waveguide can be described by the free-space-like
ispersion relation

ky
2 + kz

2 = ��k2, �1�

here � is �� for TE modes and �� for TM ones, ky and kz
re the propagation components of the wave vector, and
=� /c (with � and c being the free-space angular fre-
uency of the radiation and the speed of light in a
acuum, respectively). The propagation constant � is
iven by

ig. 1. Schematic configuration of nonmagnetic negative-
efraction system.
� = 1 −
�2

��k2 , �2�

nd the parameter � defines the mode structure in the x
irection.37

As directly follows from Eq. (1), the phase velocity of a
ropagating mode is equal to

vp = nk, �3�

here the effective refraction index n2=��. Note that
imilar to the case of the plane-wave propagation in free
pace, the refraction index contains a product of two
mode-specific) scalar constants. A transparent structure
ust have both propagation constants of the same sign.
he case of positive � and � corresponds to conventional

positive refraction index) material. The case of negative �
nd � describes NIM.7,36 The NIM behavior can be easily
llustrated by comparing the Poynting vector Sz and the
avevector kz, as shown below.
Similar to any waveguide structure, the mode in the

ystem described here can be related to the x profile of the
ongitudinal field component; a detailed description of
uch a dependence is given in Ref. 7. To better illustrate
he physical picture behind the mode propagation, in this
ection we present the results for the important case of
erfectly conducting waveguide walls. In this case, the
M energy is confined to the waveguide core and the lon-
itudinal field has a cos��x� or sin��x� profile, depending
n the symmetry with respect to the x=0 plane, with �
�2j+1�� /d for symmetric and �=2�j /d for antisymmet-
ic modes, with the integer mode number j. The deviation
rom this idealized picture due to finite conductance of the
aveguide material does not change the physical picture
escribed in this section, and for the practical case of
good” metals (Ag, Al, and Au) at near-IR to terahertz fre-
uencies can be treated perturbatively. The results of
uch a perturbation approach are presented in Subsection
.B.
The electric �UE� and magnetic �UH� field contributions

o the energy density of a mode in weakly dispersive
aterial ��� /��� �d� /d��� are given by UE
�1/8�d���D ·E*�dx and UH= �1/8�d���H ·H*�dx,
espectively25 (the asterisk denotes the complex conjuga-
ion). Using the explicit mode structure for TE and TM
aves (see Ref. 7) we arrive at

UE
�TM� = UH

�TM� =
1

16�

��
2k2

�2 �A0�2,

U�TM� = UE
�TM� + UH

�TM� =
��

2k2

8��2 �A0�2, �4�

UE
�TE� = UH

�TE� =
��

16�
�A0�2,

U�TE� = UE
�TE� + UH

�TE� =
��

8�
�A0�2, �5�

here A0 is the mode amplitude. Thus, extending the
imilarity between the waveguide system described here
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nd the free-space propagation, the EM energy of any
ropagating wave is always positive and contains equal
ontributions from the electric and magnetic components
f the field.

It is also seen that the TE mode is in some sense very
imilar to the conventional plane wave propagating in the
sotropic homogeneous dielectric. Namely, (i) energy den-
ity of the TE waves is exactly equal to that of the plane
aves and (ii) there is no wave propagation in material
ith �� 	0. In contrast to this behavior, the sign of the di-
lectric permittivity alone does not impose limitations on
he propagation of TM modes.

Another important characteristic of the energy trans-
ort in the EM system is the average energy flux given by
he propagating component of the Poynting vector S
�c /4���E
H�. Selecting the direction of the wave propa-
ation as z axis, we obtain

Sz
�TE,TM� = c

kz

���,��k
U�TE,TM�. �6�

It is clearly seen from Eq. (6) that the relation between
he direction of the phase velocity and direction of the en-
rgy flux is defined by the sign of the dielectric constant
for a given mode polarization)—positive � means n�0
ropagation, whereas �	0 signifies the NIM case. Of
ourse, for this relation to take place, we must require the
edium to be transparent; both propagation constants �

nd � must be of the same sign. As it can be seen from Eq.
1), the NIM condition can be satisfied only for the TM
ave and only in the case of extreme anisotropy of the di-
lectric constant of the core material �����	0�. The feasi-
ility of the fabrication of such unusual materials will be
iscussed in Section 3.

. The Effect of Finite Wall Conductance
n this section we consider the practical realization of the
ystem described above, in which the anisotropic core ma-
erial is surrounded by metallic walls. The electromag-
etic properties of metals at high frequencies are domi-
ated by the dynamics of the free-electron plasmalike gas.
ollowing the approach described in Ref. 38 it is possible
o write down the high-frequency effective permittivity of
etal in Drude form:

�m��� = �� −
�pl

2

��� + i
�
, �7�

here the constant term �� describes the contribution of
he bound electrons, 
 is responsible for EM losses due to
inelastic) processes, and �pl=Nee2 /meff is the plasma fre-
uency with Ne , e, and meff being the free-electron con-
entration, charge, and effective mass, respectively. Note
hat for �	�pl/��� the permittivity of the metal becomes
egative �m� 	0 (here and below single and double prime
enote the real and imaginary parts, respectively). For
ost “good” metals (Ag,Al,Au) the plasma frequency is of

he order of 10 eV and ��	1, which means that �m� is
egative from optical to gigahertz frequencies. The losses,
iven by the parameter �m� / ��m� ��1 are typically small in
hese spectral ranges.
Similar to the case of perfectly conducting waveguide
alls, the structure of the modes in the system can be de-

ived from the dependence of the longitudinal �z� field
omponent on the x coordinate, which has cos��x� or
in��x� behavior, depending on its symmetry. The exact
alue of the mode parameter � is given by the require-
ent of the in-plane �y ,z� field components’ continuity

hroughout x= ±d /2 planes. For symmetric (cosine) mode
rofile, we obtain

tan
��TM�d

2 � = −
�m��TM�

�k2��
2��� − �m� − ��TM�2

�����1/2
,

tan
��TE�d

2 � =
�k2��� − �m� − ��TE�2

�1/2

��TE�
. �8�

In the limit of �m→−�, these equations yield the values
0=��2j+1� /d, used in Subsection 2.A. As we previously
oted, these values correspond to the well-known condi-
ion of zero mode magnitude at the waveguide boundary.
n the limit of sufficiently large ��m� it is possible to find
he correction to the above values of the mode parameter
. Specifically,

��TM� 	 �0�1 −
2k��

�0
2d�− �m


 ,

��TE� 	 �0�1 −
2

kd�− �m

. �9�

As the mode parameter � plays a role of an inverse con-
nement length of the mode in x direction, the negative �
orrection signifies the “mode expansion” into the wave-
uide wall region. Such a mode expansion is illustrated in
ig. 2.
The immediate effect of such a change in the mode

tructure is the change of the effective phase velocity,
iven by the refraction index

n�TM� 	 ± ����0�1 +
2

kd�0�− �m

,

n�TE� 	 ����0�1 +
2�0

2

k3d���0�− �m

 , �10�

here �0=1−�0
2 / ���k2�. As was described above, the sign of

he refraction index for the TM polarization has to be se-

ig. 2. Cross-section of the field in the planar waveguide with
ollow d=0.5 �m thick core. Dashed curve, the case of �m=−�

perfect metal boundary); solid curve, Ag boundaries for �
0.85 �m; dots, � calculated using Eq. (9). (a) TM and (b) TE
odes are shown.
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ected positive for ���0; ��0, and negative for ��	0; �
0.
Penetration of the mode into the waveguide wall region

as another effect on the wave propagation. Namely, the
nite value of the �m� introduces an additional (with re-
pect to the core material) absorption into the system. As
result, the magnitude of a mode will exponentially de-

ay as it propagates through the system. Such an attenu-
tion can be related to the imaginary part of the effective
efractive index through E�exp�−n�kz�. In the limit of
mall absorption in the metal ��m� / ��m� ��1� the
waveguide-induced” mode decay is described by

n�TM�� 	
1

kd� ��

�0��m�

1/2 �m�

��m� �
,

n�TE�� 	
�0

2

k3d����0��m��1/2

�m�

��m� �
. �11�

ote that in agreement with causality principle7,25 the
osses in the system are positive, regardless of the sign of
he refractive index.

Using Eq. (11) we estimate that for wavelengths �
850 nm, the losses introduced by silver waveguide walls

re substantially small �n� /n�0.01�.

. ANISOTROPIC NANOPLASMONIC
OMPOSITES
e now consider the fabrication perspectives of the mate-

ial with strong optical anisotropy required for NIM
aveguide core region. A number of naturally occurring
aterials with the required properties exist at terahertz

r far-IR frequencies; some examples include Bi and
apphire.36 Unfortunately, no known material exhibits
nisotropy exceeding 30% at optical or IR spectral range.
ere we propose to take advantage of a new class of na-
oengineered media known as metamaterials.39 In these
omposites, nanostructured particles are used as meta at-
ms to achieve the desired EM properties.

To realize the strong optical anisotropy we propose to
se a combination of plasmonic or polar particles (provid-

ng the negative permittivity) and dielectric media (hav-
ng ��0). If the characteristic size of inhomogeneities and
heir typical separation are much smaller than the wave-
ength of incident radiation, the composite structure typi-
ally supports plane-wave-like modes. The EM properties
f these modes can be described in terms of the effective
ielectric constant �eff

25:

�D�r��� = ���r��,�E�r��� = �eff�,�
�E�r���, �12�

here the angle brackets denote the averaging over the
icroscopically large (multiparticle), macroscopically

mall (subwavelength) spatial area; Greek indices denote
artesian components; and summation over repeated in-
ices is assumed. Since the size of a particle a typically
nters Maxwell equations in the combination ka,25 all
ize-related effects play a minor role in the considered
uasi-static averaging process. Therefore we note that the
omposites proposed below are highly tolerant with re-
pect to size variation. Also, since the effects described
ere originate from the averaged (effective medium) prop-
rties of metamaterials, the desired response does not re-
uire any periodicity of the particle arrangement and only
he average concentration has to be controlled during the
abrication step.

Below we present two metamaterial designs of the
trongly anisotropic composite for optical and infrared
pectrum ranges.

. Layered System
e first consider the permittivity of a stack of interlacing

lasmonic (Ag,Au,Al) or polar (SiC) ��pl	0� and dielectric
Si,GaAs) ��d�0� layers. We assume that the layers are
ligned in the waveguide �y ,z� plane (see Fig. 3).
In general, the wave propagation in the layered mate-

ials strongly depends on polarization, the ratio of the
ypical layer thickness � to the wavelength �, and the mi-
rogeometry of the system, and may become extremely
omplicated owing to excitation of coupled-surface
lasmon-polariton modes, or one-dimensional photonic-
rystal-related effects (see, e.g., Refs. 4, 34, and 40–42
nd references therein for more comprehensive analysis
f the wave dynamics and underlying mode structure in
he layered composites). In the considered here case of
hin layers ��� �� ,d��, some of the propagating in the sys-
em modes have a plane-wave-like structure and can be
uccessfully described by effective medium approxima-
ion. As noted above, the absolute thickness of the layers
s not important for the propagation of these modes, and
nly the average concentration of plasmonic layers Npl
lays the role.
To compute �eff we note that the Ey , Ez, and �Ex must

e continuous throughout the system,4,25,41,42 leading to

�� = �effy,z
= Npl�pl + �1 − Npl��d,

�� = �effx
=

�pl�d

�1 − Npl��pl + Npl�d
. �13�

he same equations can be obtained as a “quasistatic”
imit ��k�x,y,z����1� of 1D photonic crystal formed by peri-
dic layered system.42

The effective permittivities for several layered compos-
tes are shown in Fig. 4. We note that although the strong
nisotropy �� ·��	0 can be easily achieved in the layered
ystem, the actual realizations of the materials with ��

0,��	0 required for the high-frequency NIM described
ere typically have substantial absorption43 and therefore
ave a limited range of applications.10,32

On the contrary, the materials with �� 	0,���0
achieved, for example by a repeated deposition of Ag-Si
ayers) form low-loss media. While this configuration has

ig. 3. Schematics of the layered structure described in the text.
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positive refraction index, it may be potentially used to
oncentrate propagating modes in subwavelength
reas.7,42

. Aligned Wire Structure
he array of aligned �pl	0 nanowires embedded in the di-
lectric ��d�0� host, schematically shown in Fig. 5, is in
ome sense a counterpart of the layered system described
bove. In fact, the boundary conditions now require the
ontinuity of the Ex field, along with the solution of quasi-
tatic equations in the y -z plane. Although in the general
ase the analytical solution of this problem is compli-
ated, the case of small plasmonic material concentration
or nearly normal incidence ��	0� is adequately de-
cribed by the Maxwell–Garnett approximation25,44–49:

�� = �effy,z
=

Npl�plEin + �1 − Npl��dE0

NplEin + �1 − Npl�E0
,

�� = �effx
= Npl�pl + �1 − Npl��d, �14�

here Ein= �2�d /�d+�pl�E0 is the field inside the plas-
onic inclusion and E0 is the excitation field.50

To illustrate the validity of the Maxwell–Garnett ap-
roximation, we numerically solve the Maxwell equations
n the planar geometry using the coupled-dipole ap-

ig. 5. (a) Schematics of the wired structure described in the te
erived from numerical solution of Maxwell equations, as descr
nclusions for Npl (b) and on concentration for �pl=−10 (c) is show

ig. 4. (a), (c), (e) Real part and (b), (d), (f) absorption of effectiv
g-Si stack, Npl=0.6; (c) and (d) Ag-SiO2 stack, Npl=0.1 (note th
pl=0.1.
roach, described in detail in Refs. 30, 46, and 51. In
hese calculations the composite is represented by a large
umber of interacting point dipoles, and the resulting
ipole-moment distribution is related to the effective di-
lectric constant. Figure 5 shows the excellent agreement
etween the numerical simulations and the analytical re-
ult [Eq. (14)].

(c) comparison of ����, calculated using Eq. (14) (solid curve) and
the text (dots); dependence of ���� on dielectric constant of the

ig. 6. (a) and (c) Real part and (b) and (d) absorption of effec-
ive �� (solid curves) and �� (dashed curves) for wired systems. (a)
nd (b) Ag-SiO2 structure (note the relatively small absorption
or the NIM regime), Npl=0.05; (c) and (d) SiC-Si structure, Npl
0.1.

lid curve) and �� (dashed curves) for layered systems. (a) and (b)
emely small absorption of this system); (e) and (f) SiC–Si stack,
xt. (b)–
ibed in
e �� (so
e extr
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The effective dielectric constants for some composite
aterials are presented in Fig. 6. Note that in contrast to

he layered system described above, these wired compos-
tes have extremely low absorption in the near-IR–NIM
egime, in a way solving the major problem with the “con-
entional” design of optical LHMs.

. IMAGING PROPERTIES OF
ONMAGNETIC OPTICAL NIMS

he spatial resolution of any monochromatic optical sys-
em can be related to its ability to restore the broad
avevector �ky� spectrum emitted by a source.10 In gen-

ral, the components of this spectrum can be separated
nto two fundamentally different parts. The waves with
ky�	 ��n� /c will propagate away from the source; the rela-
ive phase difference between these waves will increase
s the distance between the source and the point of obser-
ation is increased. In principle, the information about
he “thick” ��� / �2n�� features of the source, contained in
hese waves, can be accessed at an arbitrary point in
pace by compensating for this phase difference.

The information about the “fine structure” of the source
features �� / �2n�), however, is contained in the part of the
pectrum with �ky�� ��n� /c. The corresponding waves,
nown as evanescent waves, exponentially decay away
rom the source. These exponentially decaying waves
along with information they contain) can be directly ac-
essed only in the near-field proximity to the source. Al-
ernatively, some part of the evanescent spectrum can in
rinciple be restored by NIMs via resonant excitation of
urface waves3,10,15–17; such restoration, however, is
trongly suppressed by the material absorption.10

Note, that the boundary between the propagating and
vanescent parts of the spectrum is defined by both wave-
ength � and index of refraction n of a material around
he source. Therefore it is possible to achieve the sub-
avelength far-field resolution using the materials with

elatively large values of refraction index.24

To illustrate the imaging performance of the proposed
ystem we calculate the propagation of a wave packet
ormed by a double-slit source through the 5 �m long pla-
ar layer of 5% Ag, 95% SiO2 wire-based NIM core de-
cribed above [see Fig. 6(a) and 6(b)], embedded in the Si
aveguide. We select the thickness of the dielectric core

o be d=0.3 �m and assume the excitation by the telecom
avelength �=1.5 �m. Equations (10) and (14) yield the

ollowing values of the refraction index: n�+�	2.6, n�NIM�

−2.6+0.05i.

ig. 7. Imaging by a planar NIM-based lens. n�0 region: Si-fil
ore material described in Fig. 6(a) and 6(b). (a) The intensity d
egion is between z=2.5 �m and z=7.5 �m. The focal plane corre
ashed line, emitted radiation; solid line, focal-plane intensity d

ine, but in the case of real (absorbing) NIM. (c) same as (b), but
To calculate the resulting field distribution we first rep-
esent the wave packet at the z=0 plane as a linear com-
ination of the waveguide modes.7,36 We then use the
oundary conditions at the front and back interfaces of
he NIM region to calculate the reflection and transmis-
ion of individual mode. The solutions of Maxwell equa-
ions are then represented as a sum of solutions for the
ndividual modes.

To better illustrate the imaging properties of the sys-
em and distinguish between the effects of negative re-
ractive index and material absorption, we first neglect
osses in the NIM core. The resulting intensity distribu-
ion in the system is shown in Fig. 7(a). The image forma-
ion in the focal plane �z=10 �m� of the far-field planar
IM lens can be clearly seen. In Fig. 7(b) we compare the

maging through the planar NIM lens with and without
he material absorption and demonstrate that the pres-
nce of weak loss does not destroy the far-field imaging,
lthough it reduces the magnitude of the signal.
The resolution � of the nonmagnetic NIM structure

resented here is limited by the internal wavelength: �
�in/2=� / �2n�	0.3 �m [see Fig. 7(c)], similar to the reso-

ution of any far-field imaging system.10,25,32

. CONCLUSIONS
e presented a nonmagnetic nonperiodic design of a sys-

em with negative index of refraction. We have further
roposed several low-loss nanoplasmonic-based realiza-
ions of the proposed structure for optical and infrared
requencies. We have presented analytical description of
he effective dielectric permittivity of strongly anisotropic
anostructured composites and showed excellent agree-
ent of the developed theory with results of the numeri-

al solution of Maxwell equations. Finally, we have dem-
nstrated the low-loss, far-field planar NIM lens for �
1.5 �m with resolution �	0.3 �m.
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nar waveguide, d=0.3 �m; NIM region: planar waveguide with
tion in the system with absorption losses is neglected; the LHM
s to z=10 �m (white dashed line); the slit size is w=0.75 �m. (b)
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�m (corresponding to far-field resolution limit of the system).
led pla
istribu
spond
istribu



R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

504 J. Opt. Soc. Am. B/Vol. 23, No. 3 /March 2006 Wangberg et al.
EFERENCES AND NOTES
1. V. G. Veselago, “The electrodynamics of substances with

simultaneously negative values of � and �,” Sov. Phys. Usp.
10, 509–514 (1968).

2. J. B. Pendry and D. R. Smith, “Reversing light with
negative refraction,” Phys. Today 57(6), 37–43 (2004).

3. J. B. Pendry, “Negative refraction makes a perfect lens,”
Phys. Rev. Lett. 85, 3966–3969 (2000).

4. G. Shvets, “Photonic approach to making a materials with
a negative index of refraction,” Phys. Rev. B 67, 035109-1–8
(2003).

5. A. L. Pokrovsky and A. L. Efros, “Lens based upon the use
of left-handed materials,” Appl. Opt. 42, 5701–5705 (2003).

6. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A.
Zakhidov, “Linear and nonlinear wave propagation in
negative refraction metamaterials,” Phys. Rev. B 69,
165112-1–7 (2004).

7. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic
waveguide as a nonmagnetic left-handed system,” Phys.
Rev. B 71, 201101(R)-1–4 (2005).

8. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A.
Zharov, A. D. Boardman, and P. Egan, “Nonlinear surface
waves in left-handed materials,” Phys. Rev. E 69, 016617-
1–9 (2004).

9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction
limited optical imaging with a silver superlens,” Science
308, 534–537 (2005).

0. V. A. Podolskiy and E. E. Narimanov, “Near-sighted
superlens,” Opt. Lett. 30, 75–77 (2005).

1. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A.
Ramakrishna, and J. B. Pendry, “Limitations of
subdiffraction imaging with a negative refractive index
slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).

2. R. Merlin, “Analytical solution to the almost-perfect-lens
problem,” Appl. Phys. Lett. 84, 1290–1292 (2004).

3. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson,
“Metrics for negative refractive index materials,” Phys.
Rev. E 70, 035602(R)-1 4 (2004).

4. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis,
“Far-field optical microscopy with a nanometer-scale
resolution based on the in-plane image magnification by
surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401-
1–4 (2005).

5. A. Grbic and G. V. Eleftheriades, “Overcoming the
diffraction limit with a planar left-handed transmission-
line lens,” Phys. Rev. Lett. 92, 117403-1–4 (2004).

6. G. Shvets and Y. A. Urzhumov, “Engineering the
electromagnetic properties of periodic nanostructures using
electrostatic resonances,” Phys. Rev. Lett. 93, 243902-1–4
(2004).

7. G. Shvets and Y. A. Urzhumov, “Electric and magnetic
properties of subwavelength plasmonic crystals,” J. Opt. B
7, S23–S31 (2005).

8. S. A. Darmanyan, M. Neviere, and A. A. Zakhidov,
“Nonlinear surface waves at the interfaces of left-handed
electromagnetic media,” Phys. Rev. E 72, 0366151-6 (2005).

9. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat–Nasser,
and S. Shultz, “Composite medium with simultaneously
negative permeability and permittivity,” Phys. Rev. Lett.
84, 4184–4187 (2000).

0. C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M.
Tanielian, “Experimental verification and simulation of
negative index of refraction using Snell’s law,” Phys. Rev.
Lett. 90, 107401-1–4 (2003).

1. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Imaging by
flat lens using negative refraction,” Nature 426, 404–404
(2003).

2. S. Foteinopoulou, E. N. Economou, and C. M. Souloulis,
“Refraction in a media with negative refractive index,”
Phys. Rev. Lett. 90, 107402-1–4 (2003).

3. Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather,
“Experimental demonstration of negative refraction
imaging in both amplitude and phase,” Opt. Express 13,
2007–2012 (2005).

4. I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C.
C. Davis, “Immersion microscopy based on photonic crystal
materials,” arXiv: cond-mat/0505351-1–23 (2005).

5. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of
Theoretical Physics, 2nd ed. (Reed, 1984). Vol. 8.

6. T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J.
B. Pendry, D. N. Basov, and X. Zhang, “THz magnetic
response from artificial materials,” Science 303, 1494–1496
(2004).

7. V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K.
Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative
index of refraction in optical metamaterials,” arXiv:
physics/050491-1–17 (2005).

8. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B.
Pendry, Phys. Rev. B 69, 241101 (2004).

9. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev,
“Plasmon modes in metal nanowires,” J. Nonlinear Opt.
Phys. Mater. 11, 65–74 (2002).

0. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev,
“Plasmon modes and negative refraction in metal nanowire
composites,” Opt. Express 11, 735–745 (2003).

1. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny,
and C. M. Soukoulis, “Magnetic response of metamaterials
at 100 terahertz,” Science 306, 1351–1353 (2004).

2. It can be shown10,33 that for losses �� ,��� / ��� ,�����0.3 even
the near-field resolution of the NIM-based system is
smaller than that of conventional near-field optics.

3. V. A. Podolskiy, N. A. Kuhta, and G. Milton, “Optimizing
the superlens: manipulating geometry to enhance the
resolution,” Appl. Phys. Lett. 87, 231113 1–3 (2005).

4. M. Notomi, “Theory of light propagation in strongly
modulated photonic crystals: refractionlike behavior in the
vicinity of the photonic band gap,” Phys. Rev. B 62,
10696–10705 (2000).

5. A. L. Efros and A. L. Pokrovsky, “Dielectric photonic
crystals as medium with negative electric permittivity and
magnetic permeability,” Solid State Commun. 129,
643–647 (2004).

6. V. A. Podolskiy, L. Alekseev, and E. E. Narimanov,
“Strongly anisotropic media: the THz perspectives of left-
handed materials,” J. Mod. Opt. 52, 2343–2349 (2005).

7. The TEM wave formally corresponds to a TM wave with �
=0. As seen from Eqs. (1)–(3), such a wave cannot
propagate in NIM described here.

8. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical
Physics (Reed, 1984), Vol. 10.

9. See, e.g., J. Opt. A, Special Issue on Nanostructured
Optical Meta-Materials 7, (2005).

0. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed.
(Academic, 1980).

1. A. Alú and N. Engheta, “An overview of salient properties
of planar guided-wave structures with double-negative
(DNG) and single-negative (SNG) layers,” in Negative
Refraction Metamaterials: Fundamental Properties and
Applications, G. V. Eleftheriades and K. G. Balmain, eds.
(Wiley, 2005).

2. A. A. Govyadinov and V. A. Podolskiy, “Using photonic
crystals to build optical funnels,” Phys. Rev. Lett.,
submitted for publication.

3. This particular realization of layered NIM structure for IR
frequencies was earlier proposed in Ref. 4.

4. O. Levy and D. Stroud, “Maxwell–Garnett theory for
mixtures of anisotropic inclusions: application to
conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).

5. A. Lakhtakia, B. Michel, and W. S. Weiglhofer, “The role of
anisotropy in the Maxwell–Garnett and Bruggeman
formalisms for uniaxial particulate composite media,” J.
Phys. D 30, 230–240 (1997).

6. V. A. Podolskiy and E. E. Narimanov, “Nanoplasmonic
approach to strongly anisotropic optical materials,” in
Conference on Lasers and Electro-optics/Quantum
Electronics Conference/Photonics Applications Systems
Technologies, OSA Trends in Optics and Photonics Series
Optical Society of America (2005), paper JThC3.

7. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs,
“Extremely low frequency plasmons in metallic



4

4

5

5

Wangberg et al. Vol. 23, No. 3 /March 2006/J. Opt. Soc. Am. B 505
mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
8. G. Shvets, A. K. Sarychev, and V. M. Shalaev,

“Electromagnetic properties of three-dimensional wire
arrays: photons, plasmons, and equivalent circuits,” Proc.
SPIE 5218, 156–165 (2003).

9. A. L. Pokrovsky and A. L. Efros, “Nonlocal electrodynamics
of two dimensional wire mesh photonic crystals,” Phys. Rev.

B 65, 04510-1–8 (2002).
0. Similar to any nanostructured composite material, the
dielectric constant of nanocylinder array may be influenced
by the spatial dispersion.25,38,48,49 We defer the detailed
study of these effects to our later work.

1. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M.
Shalaev, “Resonant light interaction with plasmonic
nanowire systems,” J. Opt. A, Pure Appl. Opt. 7, S32–S37

(2005).


