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We develop an approach to use nanostructured plasmonic materials as a nonmagnetic negative-refractive-
index system at optical and near-infrared frequencies. In contrast to conventional negative-refraction materi-
als, our design does not require periodicity and thus is highly tolerant to fabrication defects. Moreover, since
the proposed materials are intrinsically nonmagnetic, their performance is not limited to the proximity of a
resonance, so the resulting structure has relatively low loss. We develop the analytical description of the rel-
evant electromagnetic phenomena and justify our analytic results via numerical solutions of Maxwell

equations. © 2006 Optical Society of America
OCIS codes: 160.4760, 110.2990, 350.5730.

1. INTRODUCTION

The electromagnetic response of negative refractive index
materials (NIM)*® has recently attracted unprecedented
attention. Novel optical phenomena predicted to take
place in these unique systems include the reversal of
Snell’s Law, the Doppler effect, the Cherenkov effect,1
aberration-free"®® and subdiffraction®®17 imaging, and
excitation of the new types of surface and nonlinear
waves.®!8 In particular, realization of NIMs may poten-
tially lead to fabrication of new types of lenses and
prisms,1’3’5 new lithographic techniques,g’w’17 novel ra-
dars, sensors, and telecommunication systems. However,
despite the great advantages NIM has to offer for optical
and infrared spectral range, all practical realizations of
NIM are currently limited to gigahertz frequencies.w_23

Until recently there were two major approaches for
NIM design. The first one is based on the original
proposal1 that material with simultaneously negative di-
electric permittivity and magnetic permeability must
have a negative refractive index. This particular ap-
proach also benefits from the possibility to resonantly ex-
cite the plasmon polariton waves at the interface between
NIM and surrounding media, which in turn may lead to
subdiffraction imaging.>?1%** However, the absence of
natural magnetism at high (optical or infrared)
frequencies® requires the design and fabrication of nano-
structured metamaterials to achieve nontrivial magnetic
permeability.2®?63! As these engineered systems typi-
cally operate in close proximity to resonance, resonant
losses become the dominant factor in system response, se-
verely limiting the practicality of resonant-based
sys‘cems.lo_l?”32
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The second approach for NIM design involves the use of
photonic crystals.4’21723’34’35 However, the NIM response
in these systems is typically associated with second- or
other higher-order bands and requires a complete band-
gap between the band in use and the next band. The dis-
persion and very existence of the required bandgap are
typically strongly affected by crystal disorder, unavoid-
able during the fabrication step. The manufacturing of
the optical photonic-crystals-based NIM typically re-
quires three-dimensional patterning with accuracy of the
order of 10 nm, which is beyond the capabilities of mod-
ern technology.

To address the above-mentioned shortcomings of the
traditional NIM schemes, we have recently introduced an
alternative approach to design NIM structures.” In con-
trast to “conventional” systems, the proposed design does
not rely on either magnetism or periodicity to achieve
negative refraction response. It has been shown that the
combination of strong anisotropy of the dielectric constant
and planar waveguide geometry yields the required nega-
tive phase velocity in the system.” Here we present a de-
tailed description of NIMs proposed in Refs. 7 and 36,
study the effects related to waveguide boundaries, impor-
tant for optical domain, and suggest several nanostruc-
tured materials providing the low-loss negative refraction
response at optical and infrared frequencies.

The rest of the paper is organized as follows: Section 2
is devoted to electromagnetic (EM) wave propagation in
strongly anisotropic waveguides; Section 3 describes the
proposed realizations of the structure; imagining proper-
ties of these composites are shown in Section 4; and Sec-
tion 5 concludes the paper.

© 2006 Optical Society of America
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2. NEGATIVE REFRACTION IN STRONGLY
ANISOTROPIC WAVEGUIDES

We consider wave propagation in the two-dimensional
planar waveguide structure shown in Fig. 1. The propa-
gation in the system is allowed in the y and z directions,
while the waveguide walls occupy the regions |x|>d/2.
The waveguide core is assumed to be a homogeneous,
nonmagnetic (u=1) material, with a uniaxial anisotropic
dielectric constant with dielectric permittivities €, and ¢
along and perpendicular to the optical axis, respectively.
The optical axis of the core material (C) is assumed to be
perpendicular to the direction of the wave propagation in
the media (Cllx). Therefore, despite the anisotropy of the
system, the effective refractive index of propagation in
the planar geometry waves will be completely isotropic.

Any wave propagating in the system can be repre-
sented as a linear combination of the waveguide
modes.”?® An individual mode is defined by its structure
along the optical axis direction (C) and its polarization.
Two different kinds of mode have to be distinguished. The
modes of the first kind (known as TE waves) have their E
vector perpendicular to the optical axis. The propagation
of these waves is fully described by the in-plane dielectric
constant €. The modes of the second kind (known as TM
waves) have their H vector in the waveguide plane and
are affected by both €, and €. The existence of these TM
waves is crucial for the NIM described here.

In the analytical results presented below we limit our-
selves to the case of single-mode propagation. We note
that such a description provides complete information
about the linear properties of the waveguide structure.
Indeed, as mentioned above, an arbitrary wave packet in
the system can be represented as a linear combination of
modes. In our numerical simulations discussed in Section
4, we utilize this property to compute the imaging perfor-
mance of the system.

A. Waveguide with Perfectly Conducting Walls

As was shown in Ref. 7, the propagation of a mode in a
planar waveguide can be described by the free-space-like
dispersion relation

kf + kz = evk?, (1)

where € is ¢ for TE modes and €, for TM ones, &, and %,
are the propagation components of the wave vector, and
k=w/c (with w and ¢ being the free-space angular fre-
quency of the radiation and the speed of light in a
vacuum, respectively). The propagation constant v is
given by

Anisotropic dielectric filling T_)
c

Fig. 1. Schematic configuration of nonmagnetic negative-
refraction system.
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and the parameter « defines the mode structure in the x
direction.®’

As directly follows from Eq. (1), the phase velocity of a
propagating mode is equal to

v, =nk, (3)

where the effective refraction index n2=ev. Note that
similar to the case of the plane-wave propagation in free
space, the refraction index contains a product of two
(mode-specific) scalar constants. A transparent structure
must have both propagation constants of the same sign.
The case of positive € and v corresponds to conventional
(positive refraction index) material. The case of negative €
and v describes NIM.”?® The NIM behavior can be easily
illustrated by comparing the Poynting vector S, and the
wavevector k., as shown below.

Similar to any waveguide structure, the mode in the
system described here can be related to the x profile of the
longitudinal field component; a detailed description of
such a dependence is given in Ref. 7. To better illustrate
the physical picture behind the mode propagation, in this
section we present the results for the important case of
perfectly conducting waveguide walls. In this case, the
EM energy is confined to the waveguide core and the lon-
gitudinal field has a cos(kx) or sin(kx) profile, depending
on the symmetry with respect to the x=0 plane, with «
=(2j+1)w/d for symmetric and k=27j/d for antisymmet-
ric modes, with the integer mode number j. The deviation
from this idealized picture due to finite conductance of the
waveguide material does not change the physical picture
described in this section, and for the practical case of
“good” metals (Ag, Al, and Au) at near-IR to terahertz fre-
quencies can be treated perturbatively. The results of
such a perturbation approach are presented in Subsection
2.B.

The electric (Ug) and magnetic (Ug) field contributions
to the energy density of a mode in weakly dispersive
material  (|e/w|>|de/dw|) are given by Ug
=(1/8wd) [(D-E"dx  and Up=(1/8md) [ (H-H")dx,
respectively25 (the asterisk denotes the complex conjuga-
tion). Using the explicit mode structure for TE and TM
waves (see Ref. 7) we arrive at

{(TM) {(TM) 1 eﬁk 2
Ug " =Uy =E77|Ao| ,

ek’
U™ =Ug™ + U™ = g’ 4
ar

€
UTE) _ [7(TE
1('«1 = Eq )=_1677|A0|2’

€
Ut = U™ + Ug™ = AP, (5)

where A, is the mode amplitude. Thus, extending the
similarity between the waveguide system described here
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and the free-space propagation, the EM energy of any
propagating wave is always positive and contains equal
contributions from the electric and magnetic components
of the field.

It is also seen that the TE mode is in some sense very
similar to the conventional plane wave propagating in the
isotropic homogeneous dielectric. Namely, (i) energy den-
sity of the TE waves is exactly equal to that of the plane
waves and (ii) there is no wave propagation in material
with € <0. In contrast to this behavior, the sign of the di-
electric permittivity alone does not impose limitations on
the propagation of TM modes.

Another important characteristic of the energy trans-
port in the EM system is the average energy flux given by
the propagating component of the Poynting vector S
=(c/4m)[E X H]. Selecting the direction of the wave propa-
gation as z axis, we obtain

SLTE’TM) =c U(TE,TM) . (6)

€,k

It is clearly seen from Eq. (6) that the relation between
the direction of the phase velocity and direction of the en-
ergy flux is defined by the sign of the dielectric constant
(for a given mode polarization)—positive € means n>0
propagation, whereas e<0 signifies the NIM case. Of
course, for this relation to take place, we must require the
medium to be transparent; both propagation constants e
and v must be of the same sign. As it can be seen from Eq.
(1), the NIM condition can be satisfied only for the TM
wave and only in the case of extreme anisotropy of the di-
electric constant of the core material (e, <0). The feasi-
bility of the fabrication of such unusual materials will be
discussed in Section 3.

B. The Effect of Finite Wall Conductance

In this section we consider the practical realization of the
system described above, in which the anisotropic core ma-
terial is surrounded by metallic walls. The electromag-
netic properties of metals at high frequencies are domi-
nated by the dynamics of the free-electron plasmalike gas.
Following the approach described in Ref. 38 it is possible
to write down the high-frequency effective permittivity of
metal in Drude form:

Q2
en(®) = € - ——— (7)

o(w+in’

where the constant term e, describes the contribution of
the bound electrons, 7is responsible for EM losses due to
(inelastic) processes, and Qp1=Nee2/ Megr is the plasma fre-
quency with N,, e, and my being the free-electron con-
centration, charge, and effective mass, respectively. Note
that for 0 <Q/ Je.. the permittivity of the metal becomes
negative €, <0 (here and below single and double prime
denote the real and imaginary parts, respectively). For
most “good” metals (Ag,Al,Au) the plasma frequency is of
the order of 10 eV and e.~1, which means that e, i
negative from optical to gigahertz frequencies. The losses,
given by the parameter €,,/|¢, |<1 are typically small in
these spectral ranges.
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Fig. 2. Cross-section of the field in the planar waveguide with
hollow d=0.5 um thick core. Dashed curve, the case of ¢, =-x
(perfect metal boundary); solid curve, Ag boundaries for A
=0.85 um; dots, k calculated using Eq. (9). (a) TM and (b) TE
modes are shown.

Similar to the case of perfectly conducting waveguide
walls, the structure of the modes in the system can be de-
rived from the dependence of the longitudinal (z) field
component on the x coordinate, which has cos(xx) or
sin(kx) behavior, depending on its symmetry. The exact
value of the mode parameter « is given by the require-
ment of the in-plane (y,z) field components’ continuity
throughout x=+d/2 planes. For symmetric (cosine) mode
profile, we obtain

™ | € KT
tan ST e TM)2 12’
2] (k%€ (€, — €,) — k™ e, |
TE) g ] [2( € —€,) - K(TE)Z]l/Z .
tan B ) . (8)

In the limit of ¢,, — -, these equations yield the values
ko=m(2j+1)/d, used in Subsection 2.A. As we previously
noted, these values correspond to the well-known condi-
tion of zero mode magnitude at the waveguide boundary.
In the limit of sufficiently large |e,| it is possible to find
the correction to the above values of the mode parameter

k. Specifically,
(TM) 2ke
K =~ Kol 1- I — N
’ Kad\ - €,

2
W TE) K0<1_kd /_) )
V=€

As the mode parameter « plays a role of an inverse con-
finement length of the mode in x direction, the negative «
correction signifies the “mode expansion” into the wave-
guide wall region. Such a mode expansion is illustrated in
Fig. 2.

The immediate effect of such a change in the mode
structure is the change of the effective phase velocity,
given by the refraction index

2
n™ ~ +\’EJ_V0 1+ ——— |,
kdvy\- €,

212
n™ ~ \EHVO 1+ ——m——— |, (10)
Rdevo\- €

where vy=1-«3/(ek?). As was described above, the sign of
the refraction index for the TM polarization has to be se-
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lected positive for €, >0; v>0, and negative for €, <0; v
<0.

Penetration of the mode into the waveguide wall region
has another effect on the wave propagation. Namely, the
finite value of the €, introduces an additional (with re-
spect to the core material) absorption into the system. As
a result, the magnitude of a mode will exponentially de-
cay as it propagates through the system. Such an attenu-
ation can be related to the imaginary part of the effective
refractive index through E «exp(-n"kz). In the limit of
small absorption in the metal (€),/|¢,|<1) the
“waveguide-induced” mode decay is described by

172
n(TM)"zi( L ) o
kd\ wle,| ) e

m

2 ”
Ko €m

PGy O
ksd(fu”o‘fm‘)m |€r,n|

(11)

Note that in agreement with causality principle”?® the
losses in the system are positive, regardless of the sign of
the refractive index.

Using Eq. (11) we estimate that for wavelengths \
=850 nm, the losses introduced by silver waveguide walls
are substantially small (n"/n=<0.01).

3. ANISOTROPIC NANOPLASMONIC
COMPOSITES

We now consider the fabrication perspectives of the mate-
rial with strong optical anisotropy required for NIM
waveguide core region. A number of naturally occurring
materials with the required properties exist at terahertz
or far-IR frequencies; some examples include Bi and
sapphire.’® Unfortunately, no known material exhibits
anisotropy exceeding 30% at optical or IR spectral range.
Here we propose to take advantage of a new class of na-
noengineered media known as metamaterials.>® In these
composites, nanostructured particles are used as meta at-
oms to achieve the desired EM properties.

To realize the strong optical anisotropy we propose to
use a combination of plasmonic or polar particles (provid-
ing the negative permittivity) and dielectric media (hav-
ing €>0). If the characteristic size of inhomogeneities and
their typical separation are much smaller than the wave-
length of incident radiation, the composite structure typi-
cally supports plane-wave-like modes. The EM properties
of these modes can be described in terms of the effective
dielectric constant e.q>":

(D)o =€r)q pEr)p) = €ctr, (E(r))g, (12)

where the angle brackets denote the averaging over the
microscopically large (multiparticle)) macroscopically
small (subwavelength) spatial area; Greek indices denote
Cartesian components; and summation over repeated in-
dices is assumed. Since the size of a particle a typically
enters Maxwell equations in the combination ka,?® all
size-related effects play a minor role in the considered
quasi-static averaging process. Therefore we note that the
composites proposed below are highly tolerant with re-
spect to size variation. Also, since the effects described
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here originate from the averaged (effective medium) prop-
erties of metamaterials, the desired response does not re-
quire any periodicity of the particle arrangement and only
the average concentration has to be controlled during the
fabrication step.

Below we present two metamaterial designs of the
strongly anisotropic composite for optical and infrared
spectrum ranges.

A. Layered System

We first consider the permittivity of a stack of interlacing
plasmonic (Ag,Au,Al) or polar (SiC) (e, <0) and dielectric
(Si,GaAs) (e;>0) layers. We assume that the layers are
aligned in the waveguide (y,z) plane (see Fig. 3).

In general, the wave propagation in the layered mate-
rials strongly depends on polarization, the ratio of the
typical layer thickness 6 to the wavelength A, and the mi-
crogeometry of the system, and may become extremely
complicated owing to excitation of coupled-surface
plasmon-polariton modes, or one-dimensional photonic-
crystal-related effects (see, e.g., Refs. 4, 34, and 40-42
and references therein for more comprehensive analysis
of the wave dynamics and underlying mode structure in
the layered composites). In the considered here case of
thin layers (6<{\,d}), some of the propagating in the sys-
tem modes have a plane-wave-like structure and can be
successfully described by effective medium approxima-
tion. As noted above, the absolute thickness of the layers
is not important for the propagation of these modes, and
only the average concentration of plasmonic layers Ny
plays the role.

To compute €. we note that the E, E,, and eE, must
be continuous throughout the sys1:em,4’25’41’42 leading to

€= €, =Ny + (1 -Ny)eg,

€p1€q
(1-Ny)ey +Npeq

(13)

€L = Ceff, =

The same equations can be obtained as a “quasistatic”
limit (k.8 <1) of 1D photonic crystal formed by peri-
odic layered system.

The effective permittivities for several layered compos-
ites are shown in Fig. 4. We note that although the strong
anisotropy ¢- €, <0 can be easily achieved in the layered
system, the actual realizations of the materials with ¢
>0, e, <0 required for the high-frequency NIM described
here typically have substantial absorption43 and therefore
have a limited range of applicat:ions.m’32

On the contrary, the materials with ¢<0,e, >0
(achieved, for example by a repeated deposition of Ag-Si
layers) form low-loss media. While this configuration has

(-

Fig. 3. Schematics of the layered structure described in the text.
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Fig. 4. (a), (¢), (e) Real part and (b), (d), (f) absorption of effective €, (solid curve) and ¢, (dashed curves) for layered systems. (a) and (b)
Ag-Si stack, N,;=0.6; (c) and (d) Ag-SiO, stack, N,;=0.1 (note the extremely small absorption of this system); (e) and (f) SiC-Si stack,

N,=0.1.
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Fig. 5. (a) Schematics of the wired structure described in the text. (b)—(c) comparison of (e),, calculated using Eq. (14) (solid curve) and
derived from numerical solution of Maxwell equations, as described in the text (dots); dependence of (e); on dielectric constant of the

inclusions for Ny, (b) and on concentration for €, =
a positive refraction index, it may be potentially used to
concentrate propagating modes in subwavelength
areas.™

B. Aligned Wire Structure

The array of aligned €, <0 nanowires embedded in the di-
electric (e;>0) host, schematically shown in Fig. 5, is in
some sense a counterpart of the layered system described
above. In fact, the boundary conditions now require the
continuity of the E, field, along with the solution of quasi-
static equations in the y-z plane. Although in the general
case the analytical solution of this problem is compli-
cated, the case of small plasmonic material concentration
for nearly normal incidence (k=0) is adequately de-
scribed by the Maxwell-Garnett approximation25’44‘49:

Ny&iEiin + (1= Np)eEy

O T TN E + (1-NpE,
€, = €, =Ny + (1 -Ny)eg, (14)

where E;,=(2¢;/¢;+€,)E( is the field inside the plas-
monic inclusion and E, is the excitation field.*

To illustrate the validity of the Maxwell-Garnett ap-
proximation, we numerically solve the Maxwell equations
in the planar geometry using the coupled-dipole ap-

—10 (c) is shown.

Seff (a) €off (C)
2fTTTTTTTTTTTTTT TS 40 f‘\
A, um PN
) 12 14 18 T 20 R SN
_ — )
4 1y 12 13p 137"
~20 \
-6 ¥
o o
lel (d)
1 .
0.8
0.6
0.4
02| /i
A, = 2mEee A,
12 14 16 M 115 12 125 137™

Fig. 6. (a) and (c) Real part and (b) and (d) absorption of effec-
tive €, (solid curves) and ¢ (dashed curves) for wired systems. (a)
and (b) Ag-SiO, structure (note the relatively small absorption
for the NIM regime), N,=0.05; (c) and (d) SiC-Si structure, N,
=0.1.

proach, described in detail in Refs. 30, 46, and 51. In
these calculations the composite is represented by a large
number of interacting point dipoles, and the resulting
dipole-moment distribution is related to the effective di-
electric constant. Figure 5 shows the excellent agreement
between the numerical simulations and the analytical re-
sult [Eq. (14)].
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Fig. 7. Imaging by a planar NIM-based lens. n>0 region: Si-filled planar waveguide, d=0.3 um; NIM region: planar waveguide with
core material described in Fig. 6(a) and 6(b). (a) The intensity distribution in the system with absorption losses is neglected; the LHM
region is between z=2.5 um and z=7.5 um. The focal plane corresponds to z=10 um (white dashed line); the slit size is w=0.75 um. (b)
Dashed line, emitted radiation; solid line, focal-plane intensity distribution in system described in (a); dash-dotted line, same as solid
line, but in the case of real (absorbing) NIM. (¢) same as (b), but w=0.3 um (corresponding to far-field resolution limit of the system).

The effective dielectric constants for some composite
materials are presented in Fig. 6. Note that in contrast to
the layered system described above, these wired compos-
ites have extremely low absorption in the near-IR-NIM
regime, in a way solving the major problem with the “con-
ventional” design of optical LHMs.

4. IMAGING PROPERTIES OF
NONMAGNETIC OPTICAL NIMS

The spatial resolution of any monochromatic optical sys-
tem can be related to its ability to restore the broad
wavevector (k,) spectrum emitted by a source.® In gen-
eral, the components of this spectrum can be separated
into two fundamentally different parts. The waves with
|k,| <|wn|/c will propagate away from the source; the rela-
tive phase difference between these waves will increase
as the distance between the source and the point of obser-
vation is increased. In principle, the information about
the “thick” (=\/|2n]|) features of the source, contained in
these waves, can be accessed at an arbitrary point in
space by compensating for this phase difference.

The information about the “fine structure” of the source
(features =\/|2n|), however, is contained in the part of the
spectrum with |ky|=|wn|/c. The corresponding waves,
known as evanescent waves, exponentially decay away
from the source. These exponentially decaying waves
(along with information they contain) can be directly ac-
cessed only in the near-field proximity to the source. Al-
ternatively, some part of the evanescent spectrum can in
principle be restored by NIMs via resonant excitation of
surface Waves3’10’15717; such restoration, however, is
strongly suppressed by the material absorption.'°

Note, that the boundary between the propagating and
evanescent parts of the spectrum is defined by both wave-
length A and index of refraction n of a material around
the source. Therefore it is possible to achieve the sub-
wavelength far-field resolution using the materials with
relatively large values of refraction index.?*

To illustrate the imaging performance of the proposed
system we calculate the propagation of a wave packet
formed by a double-slit source through the 5 um long pla-
nar layer of 5% Ag, 95% SiO, wire-based NIM core de-
scribed above [see Fig. 6(a) and 6(b)], embedded in the Si
waveguide. We select the thickness of the dielectric core
to be d=0.3 um and assume the excitation by the telecom
wavelength A\=1.5 um. Equations (10) and (14) yield the
following values of the refraction index: n(*'~2.6, n (™M
~-2.6+0.05i.

To calculate the resulting field distribution we first rep-
resent the wave packet at the z=0 plane as a linear com-
bination of the waveguide modes.”*® We then use the
boundary conditions at the front and back interfaces of
the NIM region to calculate the reflection and transmis-
sion of individual mode. The solutions of Maxwell equa-
tions are then represented as a sum of solutions for the
individual modes.

To better illustrate the imaging properties of the sys-
tem and distinguish between the effects of negative re-
fractive index and material absorption, we first neglect
losses in the NIM core. The resulting intensity distribu-
tion in the system is shown in Fig. 7(a). The image forma-
tion in the focal plane (z=10 um) of the far-field planar
NIM lens can be clearly seen. In Fig. 7(b) we compare the
imaging through the planar NIM lens with and without
the material absorption and demonstrate that the pres-
ence of weak loss does not destroy the far-field imaging,
although it reduces the magnitude of the signal.

The resolution A of the nonmagnetic NIM structure
presented here is limited by the internal wavelength: A
~N\in/2=\/|2n]|=~0.3 um [see Fig. 7(c)], similar to the reso-
lution of any far-field imaging system. " 2

5. CONCLUSIONS

We presented a nonmagnetic nonperiodic design of a sys-
tem with negative index of refraction. We have further
proposed several low-loss nanoplasmonic-based realiza-
tions of the proposed structure for optical and infrared
frequencies. We have presented analytical description of
the effective dielectric permittivity of strongly anisotropic
nanostructured composites and showed excellent agree-
ment of the developed theory with results of the numeri-
cal solution of Maxwell equations. Finally, we have dem-
onstrated the low-loss, far-field planar NIM lens for A\
=1.5 um with resolution A=0.3 um.
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